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Abstract. PSPGC is a detection-based parametric graph-cut method
for accurate image segmentation. Experiments show that seed position-
ing plays an important role in graph-cut based methods, so, we propose
three seed generation strategies which incorporate information about lo-
cation and color of object parts, along with size and shape. Combined
with low-level regular grid seeds, PSPGC can leverage both low-level and
high-level cues about objects present in the image. Multiple-parametric
graph-cuts using these seeding strategies are solved to obtain a pool of
segments, which have a high rate of producing the ground truth seg-
ments. Experiments on the challenging PASCAL2010 and 2012 segmen-
tation datasets show that the accuracy of the segmentation hypotheses
generated by PSPGC outperforms other state-of-the-art methods when
measured by three different metrics(average overlap, recall and covering)
by up to 3.5%. We also obtain the best average overlap score in 15 out
of 20 categories on PASCAL2010. Further, we provide a quantitative
evaluation of the efficacy of each seed generation strategy introduced.

1 Introduction

From the perspective of image labeling - accurately segmenting and labeling a
set of known objects in an image - the goal of image segmentation is to discover
a set of image regions that correspond to those objects. Since the appearance
of an object may be based on a combination of color, texture and shape and
is also a function of apparent size (scale), classic segmentation algorithms that
construct a single partition of the image typically fail to recover segments that
correspond to objects. So, vision systems have utilized families of segmenta-
tions - scale space representations and/or alternative segmentations constructed
by varying parameters of bottom-up segmentation algorithms [1–3]. For exam-
ple, by varying the merging parameter of multi-parametric graph-cuts (MPGC)
[4–6] one can construct a pool of image segmentations. Additionally, over the
past several years image segmentation has been augmented through data-driven
methods. These methods can be based, for example, on examining how segmen-
tation algorithms fragment object regions and then learning how to merge [7],
or on using shape priors to bias segments selected from parametrically varied
segmentation algorithms [5].

The MPGC algorithm is based on generating many seed regions - for ex-
ample by sampling pixels on a rectangular grid. Enlarging the pool of seed re-
gions increases the chance of “hitting” ground-truth objects, but at the expense
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Fig. 1. Overview of PSPGC. (a) Low-level regular grid seeds are generated. (b-e) High-
level seeds are generated using three different strategies. (b) Part-based foreground
seeds: we apply DPM to detect parts with high filter responses (marked as yellow boxes)
in a detected object, and a rectangular seed region (marked as a green rectangle) is
generated inside each part. These seeds are used in all three strategies as foreground
seeds. (c) Frame background seeds: the frame pixels are chosen as background seeds
(marked in red). (d) Bounding box background seeds + Color model: pixels lying on
the frame of the bounding box (marked as red) are set as background seeds. The
weight of non-seed pixels belonging to the foreground or background depends on the
color distribution of pixels lying on the bounding box frame and the foreground seed
pixels. (e) Shape Prior + Shape-based background seeds: a shape prior for the detected
object is selected and shape-based seeds are generated depending on this prior (marked
as a red curve). The weight of non-seed pixels belonging to the foreground depends
on the shape prior. (f) Segmentation hypotheses are generated by multi-parametric
graph-cuts.

of increasing the complexity of subsequent image labeling. However, the main
challenge methods like these face is that the segmentations they produce depend
critically on how well the seed regions sample the statistics of the object. If the
seed regions are too small, they cannot provide sufficient information (e.g., color
distribution) about the foreground and background, so objects will be over- or
under-segmented, and when they are too large, object and background statistics
are merged in the seed and again segmentation fails.

These problems can be ameliorated if some seeds are chosen using data-
driven methods that capture high-level priors about the object. Good seeds
should capture the location of parts, color, size and shape of an object to gener-
ate a good prior about the foreground. As a function of imaging conditions, (for
example: different scales), each of these characteristics have differential utility
in producing an accurate segmentation of an object. To this end, we describe
a detection-based, multi-parametric graph-cut method for image segmentation.
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Given an image, we augment seeds chosen by sampling over a regular grid of
square seeds with three complementary detection-based seeding methods. In all
three methods, the foreground seeds remain the same - they are chosen by sam-
pling rectangular regions within high ranking parts (parts with a high filter
response) obtained by running deformable part-based models (DPM) [8] detec-
tors. We refer to these foreground seeds as part based seeds. The background
seeds differ for each method. For the first method, they are set to image frame
pixels, to compensate for situations where the bounding box is highly inaccurate.
In the second method, they are the pixels lying on the frame of the bounding
box (to impose a size constraint on the object), while in the third method we
train a class- and size- specific shape model to obtain a shape prior for this
detected object, and the background seed is generated based on the contour of
this shape prior; see Fig. 1(e). For the last two methods, the weights of non-seed
pixels belonging to the foreground/background depend on the color distribution
of part-based seeds (the green rectangles in Fig.1(b-e)) and the background seed
pixels, while no such bias is used in the first method. While using shape priors,
the weights of pixels belonging to the foreground also depend on the shape (along
with the color distribution of seeds) projected onto the detection box. Finally,
we solve multi-parametric graph-cuts to generate segmentation proposals based
on these seeds.. An overview of our approach is shown in Fig. 1.

Experimental results on the PASCAL2010, 2012 datasets [9, 10] show that
our approach outperforms state-of-the-art methods. Furthermore, we show how
the three different seeding methods (shown in Fig.1 (b-d)) improve segmentation
accuracy in a complementary way. Finally, we illustrate the effect of the number
of part-based seeds on the quality of segmentation.

The contributions of our approach are as follows:
1. We combine grid based seeds with high level detection based seeds by

adding information obtained from high scoring parts in DPM. Therefore, our
method leverages both low-level and high-level cues.

2. Using detection-based seeds, we can capture the multi-modal color dis-
tribution of the object and enforce a spatial constraint on the size and pose
of the segmentation hypothesis. A category dependent shape prior further en-
hances segmentation. A statistical evaluation quantifying the efficacy of each of
the priors introduced is presented.

3. Experimental results on challenging image segmentation datasets show
that the proposed method is superior to the state-of-the-art methods as measured
by three different evaluation metrics.

2 Related work

Current algorithms providing a single bottom-up segmentation [11–14] are not
reliable. A common and highly successful approach that offers improvement over
them is to generate a large set of segmentation hypotheses by using multi-
parametric graph-cuts [4, 6]. CPMC [4] generates segmentation hypotheses by
sampling points on a grid using a rectangular basis which are used to seed the



4 Bharat Singh, Xintong Han, Zhe Wu and Larry S. Davis

foreground color model for segmentation. The border of the image is used to seed
the background, and a pixel-wise segmentation is generated with graph-cuts over
simple color cues. Object proposals [6] uses a similar pipeline, but chooses seeds
from a hierarchical segmentation, and learns an affinity measure between su-
perpixels. However, these methods rely heavily on local bottom-up cues (e.g.
color, texture, contour strength). As a result, their performance deteriorates in
situations where color consistency, contour information, etc. are insufficient to
form a good segment. Moreover, seed positioning plays an important role in
graph-cut based methods, but their seed generation schemes are not informed
by high-level information. They often result in mixed or under-sampled color and
texture distributions for the foreground and background. In contrast, we propose
detection-based seed generation strategies based on deformable part-based mod-
els (DPM), which improve the segmentation accuracy by incorporating high-level
cues in the seed generation process.

Several recent methods have attempted to obtain more accurate segmentation
given detection bounding boxes [15–17, 7, 18, 19]. However, they [16, 17, 15] trust
the class assignments of detection, which makes them inaccurate in situations
where the detection is inaccurate. In contrast, PSPGC uses detection priors along
with low-level grid based seeds, so even when the detector fails, the performance
of PSPGC does not drop significantly. Further, most of these approaches [19, 15,
7, 18] assume the detection bounding boxes are accurate. Therefore, when the
detection bounding box is inaccurate, for example, the bounding box only covers
a portion of the object, these methods only segment parts of the object inside
the bounding box. Unlike these methods, PSPGC not only uses the bounding
box to generate background seeds, but also takes advantages of the part-based
model from DPM to generate foreground seeds. These foreground seeds provide
a partial spatial and color distribution of the foreground, which results in a more
accurate segmentation than just using the bounding box.

Also, our work is related to methods leveraging shape priors by transfer-based
approaches. These approaches match regions in the test image with similar re-
gions in the training examples using k Nearest Neighbors or SVM, and project
a shape mask over the object. Some transfer-based methods [20, 7] first detect
objects and then project an average mask of the training examples onto the
detected object using a linear/non-linear transformation. Transferring category
independent shape masks by matching regions in an image with training ex-
amples has proved effective in generating a pool of segments [5]. In addition
to the above methods, category-specific shape priors from a mixture model of
deformable parts have been combined with bottom-up cues [17] for segmenting
objects. Inspired by SCALPEL [7], we use a class- and size-specific method to
form the shape priors, which affect the probability of a pixel belonging to the
foreground. We should also note that part-based seeds play a complementary role
to shape priors, since when using a global shape prior it is hard to account for
articulations and deformations present in an object class. However, in PSPGC,
seeds generated using part scores from DPM are robust to such changes, hence
can handle situations where global shape priors fail.
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(a) (b) (c) (d)

Fig. 2. In Image (a), the foreground seeds chosen by the ranker are displayed in green.
The foreground unary potentials when 1, 2 and 3 seeds are selected as foreground are
shown in figure (b), (c) and (d) respectively.

3 PSPGC

Given an image and a set of object categories for which DPM models have been
trained, our goal is to generate a set of segmentation hypotheses such that the
overlap between one of the hypothesis and each of the objects present in the
image is high. To this end, we extend the existing framework of Constrained
Parametric Min-Cuts (CPMC) [4] by incorporating seeds based on detections
from DPM and shape priors. In order to explain our framework, we give a brief
overview of CPMC.

3.1 Constrained Parametric Min-Cuts

CPMC solves multiple min cut problems with different seeds and unary terms.
The selection of foreground seeds is done by placing a rectangular grid over the
image and sampling pixels around the points on the grid using a rectangular
basis. Frame pixels are set as background seeds. The unary cost for seed pixels
is set to infinity while the unary cost for non-seed pixels is based on the color
distributions of the foreground and background seeds. The pairwise potential
depends on the contours obtained from the multi-cue contour detector globalPb
[21]. Multiple min-cut problems are solved by varying the degree of foreground
bias to generate different segmentation hypotheses. Once the segmentation hy-
potheses are generated, segments of very small size and those which have a high
degree of similarity are discarded in a fast rejection step. Finally, the segments
are ranked by graph, region and Gestalt properties.

Although CPMC is quite successful in generating a good pool of segments,
the final set of segmentation hypotheses is biased towards the initial seeds. Due
to its bottom up category independent approach, it is not able to utilize higher
level features (for example, location of parts or shape of an object) present in the
image. To this end, we augment CPMC with detection-based seeds that capture
the multi-modal color distribution of the objects in the image, enforce a spatial
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constraint on the size of the segmentation hypothesis and a category dependent
shape prior for better localization.

3.2 Segmentation Prior using Detection Based Seeds

Given an image I(V)→ R3, defined over a set of pixels V, a 4 connected weighted
grid graph G = (V, E) is constructed, where edge weights quantify the similarity
between neighboring pixels. In order to generate a binary partition of the image,
two nodes s and t are added to V. These nodes represent the foreground and
background labels respectively, which are connected to all other nodes in the
graph. The weights corresponding to these edges represent the unary cost of
assigning each pixel as a foreground or a background pixel. Given foreground
and background seed pixels Vf and Vb, the aim is to make a label assignment
{x1, ..., xn}, xi ∈ {0, 1}, where n is the total number of pixels in the image, such
that the following energy function is minimized,

Eλ(X) =
∑
u∈V

Dλ(xu) +
∑

(u,v)∈E

Vuv(xu, xv)

where λ ∈ R. The unary potential is defined as follows:

Dλ(xu) =


0 if xu = 1, u 6∈ Vb
∞ if xu = 1, u ∈ Vb
∞ if xu = 0, u ∈ Vf
f(xu) + λ if xu = 0, u 6∈ Vf

The function f(xu) is either set to 0 or is computed as ln pf (xu) − ln pb(xu),
where pf and pb are estimates of the RGB color distributions of the foreground
and background respectively. The pairwise term, Vuv, is set to zero if the labels

are same otherwise the cost is defined as exp
[
−max(gPb(u),gPb(v))σ2

]
, where gPb is

the response of the contour detector globalPb at each pixel, while σ is a constant.
The result of graph-cut based segmentation as formulated above heavily de-

pends on the placement of seeds. The color distribution of the seeds directly
affects the unary cost throughout the graph. As is evident in Fig. 2, the unary
cost which is computed using multiple seeds placed over different parts of an
object results in a much better prior about the foreground object.

Part-Based Seeds: In order to localize objects, we run discriminatively trained
part-based models (DPM) [8] for each class in the training set. DPM not only
provides us a bounding box on the detected objects, but also scores correspond-
ing to parts of an object. Since the distributions of the positioning of parts
are learned while training, the model accounts for deformation and articulation
which may be present in the test image. In our framework, we rank the part
scores based on the filter response. Finally, the top k non-overlapping parts ly-
ing inside the image are selected and a rectangular basis around the center of
these parts is used to sample the foreground seed pixels. Below, we describe
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three different strategies adopted to select the background seeds and determine
weights for non-seed pixels.

Frame Seeds (FS): In the first method, the frame pixels are set as background
seeds. No information about the bounding box or the color distribution of the
foreground or the background is used, i.e., f(xu) is set to 0 resulting in a uni-
form foreground bias. The part based seeds provide a spatial prior about the
location of different parts of an object. Even though the detection bounding box
may be inaccurate (e.g., covering a portion of the object), they are likely to
cover a reasonable portion of the foreground, which can result in an accurate
segmentation.

Bounding Box Seeds + Color Model (BBSC): In the second method,
pixels lying on the frame of the detection bounding box are used as background
seeds. Here, we do add a foreground bias for non-seed pixels and f(xu) is com-
puted as ln pf (xu) − ln pb(xu). Since the background seeds are hard, the de-
tection bounding box also enforces a size constraint on the object. Whenever
detection is more accurate or the color distribution of the object is multi-modal
(as in Fig. 2), these seeds provide a better segmentation than the previous ones.

Shape Prior + Shape-Based Seeds: In the final method, the average shape
mask is projected on the bounding box and is first thresholdeded to create a
silhouette. Finally, pixels which lie at a constant distance d from the silhouette
are assigned as background seeds. An additional term depending on the intensity
of the average mask projected on the image is added to the unary cost for non-
seed pixels, i.e., f(xu) is computed as ln pf (xu) − ln pb(xu) + c ∗ (S(xu)), where
S is the shape mask projected onto the image and c is a positive constant. The
process for creating shape masks and predicting the correct mask for a detection
bounding box is described in the next section.

3.3 Shape Prior

For the creation of shape masks, we build on SCALPEL [7]. First, for each
category, silhouettes obtained from the training data are clustered based on the
aspect ratio of their bounding boxes using k-means clustering. Silhouettes in each
aspect ratio are further clustered again to account for pose variability present in
each class. An average mask of all images within a cluster is constructed for use
as a shape prior. Clusters below a certain cardinality are discarded. We employ
a different strategy than SCALPEL to project the shape masks. Once we have a
mapping between images and cluster ids, the bounding boxes corresponding to
the silhouettes are extracted and HoG is computed over the window. We learn
an SVM on these HoG features with cluster ids as labels. Given a detection box
in a test image, HoG is computed over the detection window. The nearest aspect
ratio is chosen and the shape prior to be used is predicted by the SVM learnt
for that aspect ratio.
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4 Experiments

The experiments have three goals: (1) to demonstrate the effectiveness of our
approach by comparison with other state-of-the-art approaches, (2) to evaluate
the impact of each seed generation strategy in our method by showing the ac-
curacy gain for each strategy for objects of different sizes, and (3) to study the
performance of our method when different numbers of parts are used.

Dataset: We use the PASCAL2010 segmentation training dataset to train
our method. This training dataset has pixel-level annotations for 2,075 objects
in 964 images from 20 classes. Our approach is evaluated on the PASCAL2010
segmentation validation dataset, which contains 2,128 objects in 964 images. A
comparison of the proposed approach with other algorithms which have pre-
sented results on the validation set of PASCAL2010 is shown. Additionally, we
also test our method on the PASCAL2012 dataset (3,422 objects in 1,449 im-
ages), and compare the results with other methods. Note that for both datasets,
we use the PASCAL2010 training dataset to train our method.

Implementation details: In our implementation, we use Version 5 (Sept. 5,
2012) of discriminatively trained deformable part models (DPM) [22], to train a
detector for every class on the train set of the detection challenge in the PASCAL
2010 dataset. We sample part-based seed regions with 3 values of k - 1, 2 and
3. For the maximum k (3 in our case), we also add one seed by sampling pixels
on the clique connecting the center of the parts, which improves segmentation
for small objects. The detection threshold in DPM for each class is chosen such
that 1.75 times the total number of objects present in the training images are
detected. For clustering of shapes, we choose 4 aspect ratios and the number
of clusters for each aspect ratio is set to 8. Our method takes about 4 minutes
to generate segmentation proposals per image: 1 min for detection + 3 mins
for graph-cuts with an unoptimized MATLAB code running on a 64-bit 2.2Ghz
single core Linux machine. The running time for detection can be reduced to 10
seconds by running detectors in parallel on a 6 core processor. So the runtime of
PSPGC is comparable with CPMC which takes 3 minutes. SCALPEL’s runtime
was reported as 2.5-4.5 minutes on a 2.8GHz machine. Shape sharing takes 7-8
minutes on our 2.2GHz machine. Moreover, all methods use the globalPb contour
detector as a preprocessing step which takes 4-5 minutes to run. In short, every
method takes around 7-12 minutes in total and we believe that addition of 1
minute (or 10 seconds in parallel) would not be a large computational overhead.

Evaluation: To evaluate segmentation quality, we use three metrics: IoU [7],
covering [4, 21, 5], and recall as a function of overlap [6].

• IoU: For each proposed segment and ground truth object, the overlap score
is computed, which is the sum of the intersection of the two masks divided by
their union (IoU). To evaluate a pool of segments with respect to a given object,
we report the best IoU across all segments.

• Covering: For a given pool of segments and objects, the covering metric is
the average best overlapping score between ground-truth and proposed segments,
weighted by the size of each object. Since covering penalizes incorrect segmen-
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Method Covering(%) IoU(%) Recall(%) Num Segments

FS 84.20 74.51 83.88 707
FS + BBSC 84.97 75.35 84.16 756

PSPGC 85.21 75.70 84.67 788

Object Proposals* [6] 82.8 71.2 82.5 650
CPMC [4] 83.01 72.37 81.39 643

Shape Sharing [5] 83.69 70.9 78.26 1132
Shape Sharing* [5] 84.3 - - 1448

SCALPEL [7] 83.09 73.77 83.46 658
SCALPEL* [7] 84.4 - - 1456

Table 1. Segmentation results on PASCAL2010 validation set. Recall is computed at
50 percent overlap. The last column presents average number of segments generated
per image. The first three rows show the results obtained by different strategies of
PSPGC. * Results reported in SCALPEL [7].

tation of large objects greater than small objects, it is a good complementary
metric to IoU for evaluation of segmentation methods.
• Recall as a function of overlap: We calculate the percentage of objects

recalled at a given overlap score in order to evaluate the overall quality of pro-
posals.

4.1 Segmentation Pool Quality

To compare our approach with existing approaches, we run the publicly avail-
able implementation of CPMC [4], Shape Sharing [5], and SCALPEL [7] with
their default parameters on the PASCAL2010 validation dataset. We also pro-
vide a comparison with the published results of Object proposals [6] mentioned
in SCALPEL [7]. Table 1 shows that our approach outperforms all existing meth-
ods in all 3 metrics. Note that to study the effect of different seed generation
strategies in PSPGC, we list the results when only using parts of PSPGC: FS
(frame seeds), FS + BBSC (bounding box background seeds + color model),
along with the full model, i.e., PSPGC. From Table 1, we make the following
observations:

1. PSPGC outperforms other state-of-the-art approaches on IoU, covering,
and recall. Since it is based on CPMC, we find that we improve the accuracy
of segmentation of CPMC significantly by only adding a small number of hy-
potheses. Shape sharing has reported a covering of 84.3%, however the number
of segments generated were 1448. Similarly, SCALPEL has reported a covering
score of 84.4% with 1456 segments. It is to be noted that PSPGC generates a
comparable number of segmentation proposals to CPMC, and much fewer than
several methods like SCALPEL and Shape Sharing, while providing a better
covering score with only half the segments. Further, PSPGC provides a better
overlap than CPMC for 870 out of 2128 segments in the dataset, which implies
that more that 40% of the time, the best segment in the generated pool comes
from the seeds added by PSPGC.
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CPMC(%) SCALPEL (%) Shape Sharing(%) PSPGC(%) Increase (%)

Aeroplane 83.04 80.86 78.64 83.90 0.86

Bicycle 48.29 50.93 42.71 50.53 2.24

Bird 85.64 83.601 84.65 86.46 0.82

Boat 73.30 76.06 72.26 76.15 2.85

Bottle 73.09 78.08 69.05 79.06 5.97

Bus 77.14 82.39 79.08 79.64 2.50

Car 54.75 62.71 51.66 63.48 8.53

Cat 89.72 87.94 90.16 90.46 0.74

Chair 69.34 66.13 66.18 69.97 0.63

Cow 85.22 84.54 86.19 87.11 1.89

Table 76.90 76.98 82.04 76.56 -0.34

Dog 87.66 87.63 86.59 88.26 0.6

Horse 79.39 78.67 79.44 80.94 1.55

Mobike 73.96 76.93 76.71 77.98 4.02

Person 64.11 66.65 62.36 70.14 6.03

Plant 66.32 67.18 66.87 69.42 3.10

Sheep 68.33 74.45 66.87 71.64 3.31

Sofa 85.44 80.50 86.80 85.69 0.25

Train 83.07 82.76 84.84 85.24 2.17

Monitor 82.04 80.61 80.79 84.09 2.05

Table 2. Segmentation results on PASCAL2010 validation set. The average IoU for
each class is reported. The increase in percentage (by PSPGC) is measured over CPMC.

2. PSPGC, to the best of our knowledge, is the first method after CPMC
which improves the state of the art in segment pool generation significantly and
consistently over all metrics. SCALPEL reported an increase in IoU, however
covering improved only by 0.1%; Shape Sharing improved covering, while IoU
and recall dropped. We show an improvement of 3.3% in IoU, 3.3% in recall and
2.2% in covering over CPMC on the same dataset (PASCAL2010).

3. While comparing the accuracy when utilizing different strategies of PSPGC
(i.e., the results in the first three rows in Table 1), we find that by only adding 50
more segmentation hypotheses, the location information of part-based seeds can
improve the segmentation accuracy significantly. Furthermore, adding almost the
same number of hypotheses, by leveraging the bounding box and color model,
we obtain a considerable improvement in all three metrics. However, with the
addition of the shape prior, accuracy does not improve significantly. It is to be
noted that small errors in the positioning of the seeds does not affect the unary
cost of non-seed pixels; however using a global prior like the shape of an object is
sensitive to translation and its projection needs to be accurate. We will further
discuss the effects of these parts of the algorithm in Section 4.3 for objects of
different sizes.

Additionally, Table 2 shows IoU for different methods for each category in
the dataset. PSPGC obtains the best score in 15 out of the 20 categories. It is
evident that we obtain high gains for categories in which clear distinctions can be
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Method Covering(%) IoU(%) Recall(%) Num Segments

PSPGC 84.74 74.12 82.74 791
CPMC [4] 82.51 70.48 78.82 646

Table 3. Segmentation results on PASCAL2012 validation set. Recall is computed at
50 percent overlap. The last column presents average number of segments generated
per image.

made about parts of an object. PSPGC obtains significant improvement (>6%)
for humans over CPMC, in which there is intraclass variation in the form of
deformation and articulation between parts. Further, the color distribution in the
case of humans is multi-modal, which can be captured by placing multiple seeds
at appropriate positions. It also outperforms every other method for animals,
which are likely to have significant deformation and intraclass color variations.
We also obtain a noticable improvement in the case of rigid objects in which
parts can be distinctly identified like bikes, bottle, bus, car, motorbike, potted
plant.

It is likely that the detector might get confused because many groups of
categories like animals or vehicles share significant visual properties with each
other. However, in our method, even though the detection category is inaccurate,
the positioning of the detected parts can provide sufficient information about the
foreground. For example, in the sixth row of Fig. 5, even though the sofa was
detected as a chair, the positioning and color distribution of the seeds provided
significant information to improve segmentation.

In order to prove the robustness of PSPGC, we also show results on the
PASCAL2012 validation dataset. The results are summarized in Table 3. PSPGC
was run with the same parameters on the PASCAL2012 dataset as used in
PASCAL2010. We note that the improvement in performance is 3.6% in average
overlap, 3.9% in recall and 2.25% in covering.

4.2 Impact of Different Seed Generation Strategies in PSPGC

In Fig. 3 (a), we present a graph to analyze the effectiveness of different seed
generation strategies of PSPGC. This figure shows the gain over CPMC when
different seed generation strategies of our algorithm are applied. Additionally,
it can be seen that correct localization of seeds plays a very important role in
segmentation, irrespective of the size of the object. For very small objects (
< 800 pixels), the improvement by estimating the color distribution from the
seeds for the foreground and background is not very substantial, because these
objects are very small and there are not sufficient statistics available to estimate
the foreground color distribution. However, shape is quite useful in improving
the quality of segmentation for very small objects. As the size of the object
increases, the color distribution about the foreground/background object helps
significantly to improve the segmentation accuracy. Moreover, detection accuracy
improves when objects are of reasonable size and the size constraint enforced by
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(a) (b)

Fig. 3. (a) Gain in IoU (in percentage) due to part localization, color + size and shape
for objects of different sizes is shown. The x-axis denotes the size of the object relative
to the image size. The range of different sizes was chosen such that each bin contains
approximately the same number of objects. (b) Gain in accuracy (in percentage) over
CPMC on different metrics as we increase number of parts. No shape information is
used when we calculate these metrics.

the bounding box becomes more reliable. We observe that the improvement due
to addition of part-based seeds is largest in the case of mid-sized objects, where
there is maximum scope of improvement. We attribute this to the fact that
there is not much part information in small objects, while CPMC is reasonably
successful in computing the correct segmentation of large objects. Since FS and
BBSC also add a spatial prior about the object and performance is measured
after their addition, the effect of shape is not very evident in the combined results
presented. However, only using the seeds generated by shape priors (without FS
and BBSC), gives the following results: 84.4% covering (+1.4%), 74.1% IoU
(+1.7%) and 82.9% recall (+1.5%) with 692 segments, which is a noticeable
improvement over CPMC. Moreover, the number of objects in articulated and
deformable classes outnumber objects in rigid classes in PASCAL (person alone
comprising of 40% of all segments). It can be seen in the results shown in the
supplementary material, that shape prior helps significantly in rigid classes like
Monitor, Plant, Sofa, Sheep, Motorbike, Boat and Car.

4.3 Effect of Number of Part-Based Seeds Used

We also analyze the effect of the number of part-based seeds used in PSPGC
on different metrics. In this study, we do not use any prior shape information,
since we aim to evaluate the effect of part-based information. From Fig. 3(b), it
can be observed that we get a big improvement for the first added part because
new detection based background and foreground seeds are added for the first
part, while in the other two cases, only the foreground seeds are changed. We
notice that although the improvement in IoU is not significant for the third
added part, it helps more in improving covering. This demonstrates that more
part-based seeds are helpful in segmenting larger objects.
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Fig. 4. Failure cases of CPMC (first row) and PSPGC (second row). We can observe
that even though PSPGC is better than CPMC, there is still a scope of improvement
when objects are occluded, or when they are near to each other.

5 Discussion

PSPGC combines grid based seeds with three higher level detection-based seed
generation strategies, which help to capture more information about the loca-
tion, color, size and shape of an object. Quantitative and qualitative results
on challenging datasets show that these seed generation methods improve the
quality of segmentation when measured by IoU, covering, and recall.

Among three seed generation strategies, the positioning of seeds plays the
most important role in improving the segmentation accuracy regardless of the
size of objects. Color information helps when sufficient statistics are available.
Shape prior is helpful in segmenting rigid objects. Since we observe that seeds
play an important role in the segmentation process, a promising step would be
to incorporate relationships between objects in the seed generation process so
that segmentation is more accurate in occluded situations.
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